53 research outputs found

    Co-Design with Myself: A Brain-Computer Interface Design Tool that Predicts Live Emotion to Enhance Metacognitive Monitoring of Designers

    Full text link
    Intuition, metacognition, and subjective uncertainty interact in complex ways to shape the creative design process. Design intuition, a designer's innate ability to generate creative ideas and solutions based on implicit knowledge and experience, is often evaluated and refined through metacognitive monitoring. This self-awareness and management of cognitive processes can be triggered by subjective uncertainty, reflecting the designer's self-assessed confidence in their decisions. Despite their significance, few creativity support tools have targeted the enhancement of these intertwined components using biofeedback, particularly the affect associated with these processes. In this study, we introduce "Multi-Self," a BCI-VR design tool designed to amplify metacognitive monitoring in architectural design. Multi-Self evaluates designers' affect (valence and arousal) to their work, providing real-time, visual biofeedback. A proof-of-concept pilot study with 24 participants assessed its feasibility. While feedback accuracy responses were mixed, most participants found the tool useful, reporting that it sparked metacognitive monitoring, encouraged exploration of the design space, and helped modulate subjective uncertainty

    Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing

    Get PDF
    Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research

    A Novel Method for the Localization and Management of Traumatic Cyclodialysis Cleft

    Get PDF
    Purpose. To propose a novel surgical method for the localization and management of traumatic cyclodialysis clefts. Methods. Five patients with traumatic cyclodialysis clefts who underwent the innovative surgery were retrospectively reviewed. The new method was introduced to repair a cyclodialysis cleft with two running sutures from the middle to each end of the cleft under the guidance of a probe. Preoperative and postoperative visual acuity (VA), intraocular pressure (IOP), slit lamp and gonioscopic results, ultrasound biomicroscopy (UBM), and optical coherence tomography (OCT) findings were recorded. Results. Cyclodialysis clefts were completely closed postoperatively in four patients (four eyes); this was confirmed by progressively improved VA, restoration into the normal range of the IOP, disappearance of suprachoroidal fluid, and reduced macular edema. Only one patient with multiple clefts had an incomplete reattachment. Conclusions. This clinical study offers a novel and efficient method to localize and repair the cyclodialysis clefts

    Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients

    No full text
    Aim: To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Settings and Design: Retrospective, noncomparable consecutive case series study. Materials and Methods: Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Results: Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or <20/1000. Within a 1.1–4.2-year follow-up period, a significant increase, equal to or better than 20/66, in UCVA was observed in six (55%) cases, and in best-corrected VA (BCVA) was observed in nine (82%) cases. Postoperative BCVA was 20/40 or better in seven cases (64%). After combined surgery, the iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Conclusions: Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support

    Rolling Bearing Health Indicator Extraction and RUL Prediction Based on Multi-Scale Convolutional Autoencoder

    No full text
    Rolling bearings are some of the most crucial components in rotating machinery systems. Rolling bearing failure may cause substantial economic losses and even endanger operator lives. Therefore, the accurate remaining useful life (RUL) prediction of rolling bearings is of tremendous research importance. Health indicator (HI) construction is the critical step in the data-driven RUL prediction approach. However, existing HI construction methods often require extraction of time-frequency domain features using prior knowledge while artificially determining the failure threshold and do not make full use of sensor information. To address the above issues, this paper proposes an end-to-end HI construction method called a multi-scale convolutional autoencoder (MSCAE) and uses LSTM neural networks for RUL prediction. MSCAE consists of three convolutional autoencoders with different convolutional kernel sizes in parallel, which can fully exploit the global and local information of the vibration signals. First, the raw vibration data and labels are input into MSCAE, and then, MSCAE is trained by minimizing the composite loss function. After that, the vibration data of the test bearings are fed into the trained MSCAE to extract HI. Finally, RUL prediction is performed using the LSTM neural network. The superiority of the HI extracted by MSCAE was verified using the PHM2012 challenge dataset. Compared to state-of-the-art HI construction methods, RUL prediction using MSCAE-extracted HI has the highest prediction accuracy

    Rolling Bearing Health Indicator Extraction and RUL Prediction Based on Multi-Scale Convolutional Autoencoder

    No full text
    Rolling bearings are some of the most crucial components in rotating machinery systems. Rolling bearing failure may cause substantial economic losses and even endanger operator lives. Therefore, the accurate remaining useful life (RUL) prediction of rolling bearings is of tremendous research importance. Health indicator (HI) construction is the critical step in the data-driven RUL prediction approach. However, existing HI construction methods often require extraction of time-frequency domain features using prior knowledge while artificially determining the failure threshold and do not make full use of sensor information. To address the above issues, this paper proposes an end-to-end HI construction method called a multi-scale convolutional autoencoder (MSCAE) and uses LSTM neural networks for RUL prediction. MSCAE consists of three convolutional autoencoders with different convolutional kernel sizes in parallel, which can fully exploit the global and local information of the vibration signals. First, the raw vibration data and labels are input into MSCAE, and then, MSCAE is trained by minimizing the composite loss function. After that, the vibration data of the test bearings are fed into the trained MSCAE to extract HI. Finally, RUL prediction is performed using the LSTM neural network. The superiority of the HI extracted by MSCAE was verified using the PHM2012 challenge dataset. Compared to state-of-the-art HI construction methods, RUL prediction using MSCAE-extracted HI has the highest prediction accuracy

    Study on the Comprehensive Improvement of Ecosystem Services in a China’s Bay City for Spatial Optimization

    No full text
    Ecosystem services are characterized by region and scale, and contribute to human welfare. Taking Yantai city, a typical bay city in China, as the example, its three representative ecosystem services: food supply (FS), carbon sequestration (CS) and water yield (WY) were chosen as study targets. Based on analyzation of six different aspects of the supply and variation characteristic of demand, this study tried to propose advices for comprehensive improvement of ecosystem services for spatial optimization. The results showed that: (1) ecosystem services supply was strong in central and southern areas of Yantai, while the northern coastal areas were relatively weak; (2) synergistic relationships were found of FS-CS, FS-WY and CS-WY both in 2009 and 2015, with the strongest one for FS-WY. Additionally, in the synergistic relationships, each pair of ecosystem services was dominated by one ecosystem service; (3) most of the three pairs of synergistic relationships had the tendency to strengthen with larger scales; (4) four ecosystem demands changing areas were observed and comprehensive improvement suggestions for them were proposed. This work provides a new attempt to improve ecosystem services based on its supply-demand relationship, which will give a baseline reference for related studies in Yantai city, as well as other similar bay cities

    Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services

    No full text
    Through the implementation of ecological compensation policy, it is of great significance to protect ecosystems, coordinate regional development, and achieve sustainable development goals. This study selected the carbon sequestration service in Yantai as an example and carried out a study on the measurement of ecological compensation based on the ecosystem services supply and demand. Moreover, this study clarified the whole process of the generation, circulation and social demand docking of ecological benefits from the perspective of “nature-society”, proposed a spatial flow characterization method for carbon sequestration services, and described the “externality” spillover of ecosystem services. The results showed that most areas of Yantai belonged to the ecological surplus area, which were important sources of carbon sequestration services. Ecological compensation was needed, with a total amount of about 2.2 billion yuan. Qixia, Muping and Penglai had greater comparative ecological radiation force (CERF), and the total amount of carbon sequestration services transferred to the external areas was large. Although the carbon sequestration flows of Yantai showed a spatial decay law, there were significant differences in the direction of different districts and cities. The study can provide a reference for achieving sustainable development of Yantai and formulating ecological compensation policy

    Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services

    No full text
    Through the implementation of ecological compensation policy, it is of great significance to protect ecosystems, coordinate regional development, and achieve sustainable development goals. This study selected the carbon sequestration service in Yantai as an example and carried out a study on the measurement of ecological compensation based on the ecosystem services supply and demand. Moreover, this study clarified the whole process of the generation, circulation and social demand docking of ecological benefits from the perspective of “nature-society”, proposed a spatial flow characterization method for carbon sequestration services, and described the “externality” spillover of ecosystem services. The results showed that most areas of Yantai belonged to the ecological surplus area, which were important sources of carbon sequestration services. Ecological compensation was needed, with a total amount of about 2.2 billion yuan. Qixia, Muping and Penglai had greater comparative ecological radiation force (CERF), and the total amount of carbon sequestration services transferred to the external areas was large. Although the carbon sequestration flows of Yantai showed a spatial decay law, there were significant differences in the direction of different districts and cities. The study can provide a reference for achieving sustainable development of Yantai and formulating ecological compensation policy
    corecore